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Out-of-Distribution Detection (OOD)

Out-of-distribution detection
Class A Class C OOD samples
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Motivation
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e OOD samples = B

- | :
o unknown skin conditions N @ EC
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o hardware device variations JANNNNENEEE ) |
(c)CIFAR-10 dataset — Balanced and coarse-gramned

(10 balanced categories with visually distinguishing features)
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o different clinical settings
e Different problem setting

o commonly used datasets (A) v.s clinical deployment purposes

m (A) is well balanced and coarse-grained

m (A) is not long-tailed



Motivation

e The setting for real-world application scenario

o fine-grained categories

o long-tailed distribution

In-Distribution (ID) : Out-of-Distribution (OOD)
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(a) In-house dataset — Long-tailed and Fine-grained
(65 categories with high imbalance and having visually similar features)




Proposed Method

e Although random oversampling/undersampling and techniques like
SMOTE [3] can be used to tackle this problem, repeating/removing

samples of classes does not help the classifier learn any better decision
boundaries.



Proposed Method

e Although random oversampling/undersampling and techniques like
SMOTE [3] can be used to tackle this problem, repeating/removing
samples of classes does not help the classifier learn any better decision
boundaries.

e Our proposed approach employs a combination of data augmentation
using mixup and better feature space learning using prototype loss
specifically targeted to middle and tail classes.

e This enables us to improve the classification performance for those
middle and tail categories which also increases the OOD detection
performance.



Proposed Method

e Inter-subset mixup strategy
o Target the middle and tail classes
e Convolutional Prototype learning

o Tackle the fine-grained aspect
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Head Middle Tail

Subset Subset Subset
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° . | |
Inter-subset Mixup Strategies (1) .|| |
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o Middle (M C Q) E I |
o Tail(Tc Q) R ————
® M p Classes
o (zi,¥:)and (7;,9;) are two examples drawn at random from our training data.
o A€]0,1], where A ~ Beta(a, «), for a € (0, 00). - ,
o  F=Am+(1— Nzj, where z;, x; are raw input vectors »
y = A\y; + (1 — ANy, where v;, y; are one-hot label encodings
g=Ay; + (1= Ny;, Yi»Yj g 'L(W Fe
& Mixup
Zhang. H.. Cisse. M., Dauphin, Y.N. and Lopez-Paz. D., 2017. mixup: Beyond empirical risk minimization. arXiv preprint image (x;)

arXiv:1710.09412.
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Inter-subset Mixup Strategies (2)

Head Middle Tail

e Mixup strategy Subset  Subset  Subset
| M (T
o intra-subset mixup : MX1 ~ MX3 D A\ R
mmMX1 2 3 MX3
o inter-subset mixup : MX4 ~ MX6 BNV P | el
. . QU4 VXs
e Mixup loss for the specific subset selected Mo

40000 A
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20000 -

|
I
I
I
30000 |
|
|
|
|

10000 A

LI A

Number of samples

0 10 20 30 40

Classes



Inter-subset Mixup Strategies (3)
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Intra-subset Mixup Strategies
MXI1 — Head-Head Mixup
Eﬁtomz = A Lmizup{H} + AMLcE{M} + ATLCE(T)

! MX2 — Middle-Middle Mixup i
i

E[ftotal = AuLcpiay + A Lmizupimy + ArLop{Ty
I
i MX3 - Tail-Tail Mixup

Inter-subset Mixup Strategies
MX4 — Head-Middle Mixup
Ltotal = AHM Ligup{H-M} + ATLCE{T}
MXS5 — Middle-Tail Mixup
Liotat = AHLCE{H} + AMT Lnizup{M~T}
MX6 — Head-Tail Mixup
Liotal = AMLcE{M} + AHTLmizup{H-T}
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Proposed Method

e Inter-subset mixup strategy
o Target the middle and tail classes (MX5)
e Convolutional Prototype learning

o Tackle the fine-grained aspect

14



Integration of Mixup with Prototype Learning

e Convolutional Prototype Learning

outlier rejection
class 1 .--. SN

{ 9
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H. Yang, X. Zhang, F. Yin and C. Liu, "Robust Classification with Convolutional Prototype Learning." 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, pp. 3474-3482. doi: 10.1109/CVPR.2018.00366.
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Convolutional Prototype Learning (CPL)

e (Componentsin CPL

o Convolutional layers : Extract discriminative features
o Multiple prototypes : Represent different classes

o The classification : Finding the nearest prototype (using Euclidean distance) in the

feature space. outlier rejection

class 1 .

’
’ 2 \
[ Y )
\

new category
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Convolutional Prototype Learning

outlier rejection
class 1 .-,

e Components in CPL D
o Convolutional layers §:> comiolusion mh . p
: ® .y N
m Feature extractor(CNN) is denoted as f(x;0) s A2

class 2

m T and @ denote the raw input and parameters of the CNN
o Multiple prototype m;;
m ¢ €{1,2, .. Crepresents the index of the classes
] ] € {1, 2, ..., K} represents the index of the prototypes in each class

o The final learned representation is intra-class compact and inter-class separable.
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Architecture of the framework (1)

e Feedforward for prediction

(@)

(@)

, : &
Given an input pattern = x € class arg malxg@-(x)
=

where g;(x)is the discriminant function for class

S 2
gi(z) = —ijg{l | ) — mij“z
outlier rejection
class 1 ; |
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Architecture of the framework (2)

e Backward for training

o The trainable parameters

m 0O:the parameters of the CNN extractor

m M={m;|i=1,..,Cj=1,.., K}:the prototypes in each class
o Loss function

m Intra-class compact

m Inter-class separable representations

m Should be derivable with respect to 6 and M as well.
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Architecture of the framework (3)

e C(lassification loss

o  Minimum classification error loss (MCE)
o Margin based classification loss (MCL)

o Distance based cross entropy loss (DCE)

20



Distance based cross entropy loss (DCE) (1)

e The distance can be used to measure the similarity between the samples
and the prototypes

. 2
p(x € myj|z) o — || f(x) — myjll; -

e To satisfy the non-negative and sum-to-one properties of the probability,

we further define the probability as
e—d(f(z),mij)

Zgzl le; e—va(f(x),mxi)
_ , 2
where d(f(x),mi;) = || f(x) — my;ll5

p(z € my;|x) =
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Distance based cross entropy loss (DCE) (2)

e Given the definition of p(x € m;;|x) we can further define the probability
of p(y|a:) as:
p(ylx) = Zp T € my;|x)

e Based on the probability of p(y|x), we can define the cross entropy (CE)
loss under our framework as:

[((z,y); 0, M) = —logp(y|v)
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Generalized CPL with prototype loss(GCPL)

e Directly minimizing the classification loss may lead to over-fitting.

e Add prototype loss (PL) as a regularization, which acts like a generative
model to improve the generalization performance of CPL.

pl((x,y); 0, M) = || f(z) — my;]l;
e The total loss:
loss((z,y);0, M) = l((z,y); 0, M) + Apl((z,y); 0, M)

Classification PL Loss
Loss

23



Generalized CPL with prototype loss(GCPL)

e PL pull the features of samples close to their corresponding prototypes,
implicitly increase the distance between the classes.

e The classification loss stresses the separation property.
The prototype loss stresses the compactness property.

e More robust and more appropriate for rejection and open set
problems.
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Experiments and analysis on MNIST

GCPL
CPL 9 ‘ T ._ ' P
: » f P i |
l((x’y)’g’M) +)\pl((x,y),9,M) ‘ : | T ¥ - .
. e . aion - ‘-. X
Classification PL Loss , - %
Loss » ¥, L o

Figure 3. The learned representations of CPL and GCPL on
MNIST. Different colors represent different classes
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Integration of Mixup with Prototype Learning

e Prototype learning learn fine-grained features

e Best performing mixup strategy long-tailed aspects

Lonseimizup = M f(@i5) = pill* + (1 = NI (@5) — ;17

—logp(y|z)
Edcelmimup = A‘CCE(dxpia y’b) g 3 (1 _ A)ECE(dCEpﬁ y])

o where {d.pi,d.p; }is the square of the distance between the feature f,;;

from the class specific prototypes {p;, p;}
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Integration of Mixup with Prototype Learning

Class (', feature space
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Dataset Settings and Evaluation Metrics (1)

e In-house dataset

o 65 categories

m 6 Head (more than 10,000 samples)

m 17 Middle (500 to 10,000 samples)

m 22 Tail (less than 500)

m therest 20 are reserved as OOD categories
o 45D categories : 85%-15% train-test split.
o Train set: 80%-20% for training and validation.

28



Dataset Settings and Evaluation Metrics (2)

e [SIC 2019 dataset

o 8 categories

m 2 Head (NV-12875 & MEL-4522)

m 2 Middle (BCC-3323 & BKL-2624)

m 2 Tail (AK-867 & SCC-628)

m DF-239 & VASC-253 are reserved as OOD categories
o 61D categories : 85%-15% train-test split.
o Train set: 80%-20% for training and validation.
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Dataset Settings and Evaluation Metrics (3)

e C(IFAR-10 dataset (60000 images)

o 10 classes categories
m 6000 ID samples
m 1000 more OOD samples
e unusual images in a clinic, such as blurred images of skin lesions and ones
that are completely covered by hair, ear, etc.
o 50000 train images and 10000 test images.
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Ablation Study of Mixup Strategies (1)

e Standard Mixup

o Increases the overall closed set performance as well as OOD performance by 3.3% and

0.7%.
o Decrease the closed set accuracy of tail classes.

Table 1. Performance evaluation of proposed mixup strategies on our in-house dataset

Mocedce 0

Mixup Strategy H(Lj:(’f‘ﬁijgl(EIDT)agf\C}ft)al OOD (AUROC%)
Baseline 66.67 | 38.26 | 36.98 | 60.56 65.67
Standard Mixup 67.23 | 45.18 | 33.89 (63.90 66.35
H-H Intrasubset (MX1) |70.11| 34.74 |25.14|60.84 64.18
M-M Intrasubset (MX2) [63.12|55.36 |31.54|61.80 66.47
T-T Intrasubset (MX3) |64.29| 47.96 [39.49|61.06 66.25
H-M Intersubset (MX4) [66.92| 44.97 |22.21|62.31 64.33
M-T Intersubset (MX5)|63.67| 55.14 |38.76 | 60.97 68.78
H-T Intersubset (MX6) |66.95| 36.32 |36.67 |59.24 64.45




Ablation Study of Mixup Strategies (2)

o MX2, MX3

o Help to increase the corresponding subset closed set accuracies.

o MX5
o Significantly increases the OOD performance by 3%.
o The overall accuracy only increases slightly when compared to the baseline.

Table 1. Performance evaluation of proposed mixup strategies on our in-house dataset

. Ry o Closed set (ID) (Acc%) |- ]

Mixup Strategy Head Viddiel Tail TTotal OOD (AUROC%)
Baseline 66.67 | 38.26 | 36.98 | 60.56 65.67
Standard Mixup 67.23 | 45.18 | 33.89 (63.90 66.35
H-H Intrasubset (MX1) |70.11| 34.74 |25.14|60.84 64.18
M-M Intrasubset (MX2) [63.12|55.36 |31.54|61.80 66.47
T-T Intrasubset (MX3) |64.29| 47.96 [39.49|61.06 66.25
H-M Intersubset (MX4) [66.92| 44.97 |22.21|62.31 64.33
M-T Intersubset (MX5)|63.67| 55.14 |38.76 | 60.97 68.78
H-T Intersubset (MX6) |66.95| 36.32 |36.67 |59.24 64.45




Dataset Settings and Evaluation Metrics

e Training Implementation

©)

O O O o

O

use Resnet34[12] as backbone architecture : Resnet34
Adam optimizer

batch size of 32

initial learning rate of 1e-4 with exponential decay for 45 epochs
Resize the input image to a size of 224x224

Standard data augmentation of random crop and horizontal flip

e FEvaluation Metrics

@)

@)

closed set performance
m precision (pre), recall (rec), and f1-score (f1)
OOD detection performance
m Area Under Receiver Operator Characteristic (AUROCQ)
m  Wwhich are the standard metrics for measuring the performance of a model for OOD

detection task [10].

[10] Geng, C., Huang, S.j., Chen, S.: Recent advances in open set recognition: A survey. IEEE transactions on pattern

analysis and machine intelligence (2020)
[12] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE

conference on computer vision and pattern recognition (2016)

33



Benchmarking with other methods (1)

The existing OOD techniques are capable of detecting relatively easy OOD

samples coming from a completely different domain.

Table 2. Benchmarking of OOD techniques on both In-house and ISIC2019 dataset. ID
metrics -{Precision (pre), Recall (rec), and fl-score(fl)}; OOD metrics - {AUROC(%)}

(best viewed in zoom).

Method In-house dataset ISIC2019
ID(pre) {ID(rec){ID(f1)|OOD(20cl)|OOD(unk)|OOD(Cifar)| ID(pre) ID(rec) ID(f1) 00D(2cl) [OOD(Cifar)
Baseline 0.58 0.59 |0.585 65.67 52.90 73.24 0.86 +0.03 | 0.86 +£0.02 | 0.86+0.02 [68.15+0.9]|76.43+0.4
Baseline+LS+RandAug+LRS [29] 0.62 0.63 |0.625 66.19 63.13 96.34 0.87 £ 0.015|0.86 + 0.017| 0.865 £ 0.015 [ 69.41 + 0.5 | 94.87 + 0.6
ODIN [18] 0.61 0.59 | 0.60 64.92 62.79 96.48 0.834+0.03 | 0.81 +£0.02 | 0.82 £ 0.025 [66.21 £+ 1.3 | 95.60 + 1.2
OLTR |[20] 0.63 0.62 |0.625 67.42 70.72 98.00 0.854+0.01 | 0.86 + 0.02 [ 0.855 + 0.015 | 71.66 £ 0.6 | 98.45 + 0.5
MC-Dropout [8] 0.59 0.58 [0.585 66.07 68.83 97.57 0.84 £0.023(0.84 £0.02 | 0.84+0.02 |72.18+0.3|96.41+0.3
ARPL [4] 0.64 | 0.63 |0.635| 68.55 80.61 99.42 0.85 4+ 0.01 |10.86 + 0.016/0.855 4+ 0.012 [ 74.16 £ 0.7 97.20 £ 0.4
Mixup [32] 0.63 0.62 |0.625 66.35 66.70 97.10 0.87 +0.02|0.88 + 0.01|0.875 + 0.013| 71.72 £ 0.7 | 96.65 + 0.6
Prototype [30] 0.63 0.62 |0.625 68.82 74.54 98.04 0.85+0.02 | 0.86 +0.02 | 0.855+0.02 |72.84 £ 0.6 | 97.02 £ 0.5
M-T Mixup (Ours) 0.61 0.60 |0.605 68.78 70.81 99.29 0.854+0.03 | 0.85+0.02 | 0.85+0.022 [73.86 + 0.6 97.10 £ 0.6
M-T Mixup + Prototype (Ours)| 0.62 0.61 |0.615| 71.10 82.71 99.59 0.854+0.01 | 0.86 + 0.02 | 0.855 + 0.015 [76.37 + 0.5|98.46 + 0.4
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Benchmarking with other methods (2)

The performance of all the techniques drops drastically when the OOD

samples are from the same domain. Specifically, this is more evident for a

long-tailed nature dataset such as our in-house dataset.

Table 2. Benchmarking of OOD techniques on both In-house and ISIC2019 dataset. ID
metrics -{Precision (pre), Recall (rec), and fl-score(fl)}; OOD metrics - {AUROC(%)}

(best viewed in zoom).

Method In-house dataset ISIC2019
ID(pre) {ID(rec){ID(f1)|OOD(20cl)|OOD(unk)|OOD(Cifar)| ID(pre) ID(rec) ID(f1) 00D(2cl) [OOD(Cifar)
Baseline 0.58 0.59 |[0.585 65.67 52.90 73.24 0.86 +0.03 | 0.86 +£0.02 | 0.86+0.02 [68.15+0.9]|76.43+0.4
Baseline+LS+RandAug+LRS [29] 0.62 0.63 |0.625 66.19 63.13 96.34 0.87 £ 0.015|0.86 + 0.017| 0.865 £ 0.015 [ 69.41 + 0.5 | 94.87 + 0.6
ODIN [18] 0.61 0.59 | 0.60 64.92 62.79 96.48 0.834+0.03 | 0.81 +£0.02 | 0.82 £ 0.025 [66.21 £+ 1.3 | 95.60 + 1.2
OLTR |[20] 0.63 0.62 |0.625 67.42 70.72 98.00 0.854+0.01 | 0.86 + 0.02 [ 0.855 + 0.015 | 71.66 £ 0.6 | 98.45 + 0.5
MC-Dropout [8] 0.59 0.58 [0.585 66.07 68.83 97.57 0.84 £0.023(0.84 £0.02 | 0.84+0.02 |72.18 +0.3|96.41+0.3
ARPL [4] 0.64 | 0.63 |0.635| 68.55 80.61 99.42 0.85 4+ 0.01 |0.86 £ 0.016/0.855 + 0.012 | 74.16 £ 0.7 | 97.20 £ 0.4
Mixup [32] 0.63 0.62 |0.625 66.35 66.70 97.10 0.87 +0.02|0.88 + 0.01|0.875 + 0.013| 71.72 £ 0.7 | 96.65 + 0.6
Prototype [30] 0.63 0.62 |0.625 68.82 74.54 98.04 0.85+0.02 | 0.86 +0.02 | 0.855+0.02 |72.84 £ 0.6 | 97.02 £ 0.5
M-T Mixup (Ours) 0.61 0.60 |0.605 68.78 70.81 99.29 0.854+0.03 | 0.85+0.02 | 0.85+0.022 [73.86 + 0.6 97.10 £ 0.6
M-T Mixup + Prototype (Ours)| 0.62 0.61 |0.615| 71.10 82.71 99.59 0.854+0.01 | 0.86 + 0.02 | 0.855 + 0.015 [76.37 + 0.5|98.46 + 0.4
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Benchmarking with other methods (3)

M-T mixup (MX5) strategy combined with prototype learning performs the

best for OOD detection while maintaining the overall ID performance
compared to the baseline on both datasets.

Table 2. Benchmarking of OOD techniques on both In-house and ISIC2019 dataset. ID
metrics -{Precision (pre), Recall (rec), and fl-score(fl)}; OOD metrics - {AUROC(%)}

(best viewed in zoom).

Method In-house dataset ISIC2019
ID(pre) {ID(rec){ID(f1)|OOD(20cl)|OOD(unk)|OOD(Cifar)| ID(pre) ID(rec) ID(f1) 00D(2cl) [OOD(Cifar)
Baseline 0.58 0.59 |[0.585 65.67 52.90 73.24 0.86 +0.03 | 0.86 +£0.02 | 0.86+0.02 [68.15+0.9]|76.43+0.4
Baseline+LS+RandAug+LRS [29] 0.62 0.63 |0.625 66.19 63.13 96.34 0.87 £ 0.015|0.86 + 0.017| 0.865 £ 0.015 [ 69.41 + 0.5 | 94.87 + 0.6
ODIN [18] 0.61 0.59 | 0.60 64.92 62.79 96.48 0.834+0.03 | 0.81 +£0.02 | 0.82 £ 0.025 [66.21 £+ 1.3 | 95.60 + 1.2
OLTR |[20] 0.63 0.62 |0.625 67.42 70.72 98.00 0.854+0.01 | 0.86 + 0.02 [ 0.855 + 0.015 | 71.66 £ 0.6 | 98.45 + 0.5
MC-Dropout [8] 0.59 0.58 [0.585 66.07 68.83 97.57 0.84 £0.023(0.84 £0.02 | 0.84+0.02 |72.18 +0.3|96.41+0.3
ARPL [4] 0.64 | 0.63 |0.635| 68.55 80.61 99.42 0.85 4+ 0.01 |0.86 £ 0.016/0.855 + 0.012 | 74.16 £ 0.7 | 97.20 £ 0.4
Mixup [32] 0.63 0.62 |0.625 66.35 66.70 97.10 0.87 +0.02|0.88 + 0.01|0.875 + 0.013| 71.72 £ 0.7 | 96.65 + 0.6
Prototype [30] 0.63 0.62 |0.625 68.82 74.54 98.04 0.85+0.02 | 0.86 +0.02 | 0.855+0.02 |72.84 £ 0.6 | 97.02 £ 0.5
M-T Mixup (Ours) 0.61 0.60 |0.605 68.78 70.81 99.29 0.854+0.03 | 0.85+0.02 | 0.85+0.022 [73.86 + 0.6 97.10 £ 0.6
M-T Mixup + Prototype (Ours)| 0.62 0.61 |0.615| 71.10 82.71 99.59 0.854+0.01 | 0.86 + 0.02 | 0.855 + 0.015 [76.37 + 0.5|98.46 + 0.4
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Confidence Scores Visualization

e |InFig 4, we analyse the performance results in more detail by showing the
probability density of the confidence scores for different subsets.

° between the distribution of OOD {O, U} from
ID{H, M, T}, the

e Specifically, itis to be noted that thls is achieved by making the {M, T}
subsets more confident which justifies our targeted strategy
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Confidence Scores Visualization

Baseline Standard Mixup Prototype MXS — Middle-Tail Mixup  Prototype + MX5
(Ours) (Ours)
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Fig. 4. Confidence Scores visualization for different methods on our In-house dataset
and ISIC dataset. {H,M,T} refer to Head, Middle, and Tail subsets. {O} refers to
OOD(2cl) and OOD(20cl) for ISIC and In-house dataset. {U} refers to the OOD(unk)
for In-house dataset. (best viewed in zoom).
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